亚洲二区三区在线,久久久久高清毛片一级,亚洲综合一区二区三区不卡,中文不卡av

歡迎訪問科技網!

您當前的位置: 首頁 > 科技新聞

來自太陽的“幽靈粒子” 證實“胖子”恒星的產能方式

來源:科技日報 字號: [ 大 ] [ 中 ] [ 小 ]

  意大利拉奎拉鎮,亞平寧山脈地下1000米深處,一個裝有近300噸液態烴的大罐子,正在靜靜地等待,等待著1.5億千米之外的太陽釋放一種“幽靈粒子”——中微子。

  這種中微子來自太陽碳氮氧聚變循環。80年前,有科學家提出了碳氮氧循環的理論,這種碳氮氧循環反應是太陽次要的核聚變方式,它產生的能量還不足太陽整體能量的1%,但它卻被認為是較大型恒星的主要能量來源。

  80年來,世界各國的科學家都在想盡辦法去證實太陽碳氮氧聚變循環的存在,直到最近才有了答案。

  11月25日,《自然》雜志發表論文稱,科學家通過高靈敏度檢測器檢測到了太陽碳氮氧聚變循環產生的中微子。對于這些中微子的測量,可以更好地幫助我們解太陽結構和太陽核心內的元素豐度,進一步了解不同恒星的主導能量來源。

  恒星產能方式有兩種

  艷陽天雖好,但出門游玩的人,往往需要提前做好防曬準備。在科學家的眼中,看到的則是為什么太陽在1.5億千米之外發出的光線都能曬傷我們的皮膚。19世紀末的物理學家非常迫切地想知道,為太陽這樣一個巨大“火球”提供能源的,到底是什么。

  今天,我們了解到,太陽源源不斷地釋放能量,主要是通過大規模的聚變反應。簡單地說,就是太陽內部的氫原子在高溫高壓的作用下不停地碰撞并發生反應結合成氦原子。這個過程就會以光和熱的形式釋放出驚人的能量。

  但是,太陽上發生的聚變反應非常復雜。想要了解太陽或其他恒星上究竟發生了怎樣的聚變反應,只能通過科學的假設和收集細微的證據來實現。

  在上世紀30年代,有科學家提出,太陽的氫核聚變有兩種,一種是質子—質子鏈,它只涉及氫和氦的同位素,在像太陽這樣的恒星中占主導地位;另一種是碳氮氧循環,它可能是更大質量恒星的主要能量來源。

  “碳氮氧循環是氫元素核聚變反應的一種。氫元素不斷與碳氮氧元素發生核反應,最終將氫元素轉化為氦元素并釋放能量。因為這個核反應過程有碳氮氧元素作為催化劑參與,因此叫作碳氮氧循環。”南京大學天文與空間科學學院副教授張曾華告訴科技日報記者。

  為何太陽核聚變分為兩種呢?張曾華解釋說:“越重的元素聚變反應所要求的溫度也越高。聚變反應的發生主要取決于恒星內部的溫度,而恒星內部溫度則取決于其質量的大小,質量越大的恒星內部溫度越高。氫的質子—質子鏈反應對溫度要求相對較低,碳氮氧循環對溫度要求相對較高。所以小質量的恒星難以支持碳氮氧循環,而以太陽的質量,則剛好能夠維持低速率的碳氮氧循環。”

  因為觀測難度高,這個理論始終只是一個科學猜想,人類一直沒有發現它存在的直接證據。若能證實這一理論,將有助于解釋較大質量恒星的形成和演化過程。

  捕獲“幽靈粒子”有多難

  不論是質子—質子鏈反應,還是碳氮氧循環,都會釋放出一種粒子,科學家稱其為中微子。

  太陽中微子飛越1.5億千米到達地球,我們卻很難將其捕獲,因為它們幾乎沒有質量,能夠很輕松地以接近光速的速度穿透地球,這讓人們很難察覺它們存在的跡象。

  更讓科學家為難的是,要想對質子—質子鏈和碳氮氧循環釋放出的中微子進行深入研究,不僅要捕獲它們,還得把它們區分開。這是一項極具挑戰的工作。

  張曾華告訴記者,不同來源的中微子能譜分布有所不同。與質子—質子鏈產生的中微子相比,碳氮氧循環產生的中微子單個能量偏大,總體流量偏小。

  “到達地面探測器的太陽中微子數目雖然可觀。但是,因為中微子穿透力極強,它們與探測器里的液體發生碰撞,產生可記錄的熒光信號的概率卻極小。每100噸探測液體每天只能記錄大約幾十個太陽中微子,其中可能只有幾個來自碳氮氧循環,其余則來自質子—質子鏈。所以想要增加探測信號的數量,就需要增加探測的時間。”張曾華介紹說。

  為此,科學家設計了一個特殊的粒子探測器。為了確保粒子探測器不被宇宙輻射湮沒,只接收罕見的中微子信號,科學家將它建在意大利亞平寧山脈地下1000米深處。

  在這個大罐子中,裝有近300噸的有機閃爍液體,當大量中微子穿過這個液體時,極少數可以與其中的電子相互作用,釋放出微小的閃光,這些閃光的亮度表明了中微子的能量,那些由碳氮氧循環產生的中微子會發出相對更強烈的閃光。

  張曾華說,碳氮氧循環反應產生的中微子不僅數量稀少,而且容易與由鉍-210放射性衰變產生的中微子混淆。因此,科學家必須改進儀器性能,從鉍噪聲中分離出來自太陽的中微子。

  雖然該粒子探測器早就建好,但是為了收集足夠多的碳氮氧循環中微子,研究人員花了3年半的時間,才積累到這次發現所需要的數據。

  攜帶太陽內部金屬豐度信息

  在科學家看來,這些遠道而來的中微子,堪稱太陽的信使。

  “這次發現證實了碳氮氧循環的存在。也證實了當前的理論預言,那就是太陽1%的能量來自碳氮氧循環。”張曾華告訴記者,太陽中質子—質子鏈產生的能量占99%,而碳氮氧循環貢獻的能量只有大約1%,但這1%的能量卻是我們了解其他恒星的一個重要窗口。

  張曾華解釋說,不同質量的恒星中,質子—質子鏈與碳氮氧循環對能量的貢獻比率不同。恒星的質量小于1.3倍太陽質量時,質子—質子鏈起主導作用。恒星的質量大于1.3倍太陽質量時,碳氮氧循環起主導作用,“這次發現也驗證了,碳氮氧循環如何主導質量大于太陽質量的恒星產能方式”。

  科學家認為,碳氮氧循環產生的太陽中微子攜帶著太陽內部的金屬豐度信息,將來可以被用來直接測量太陽內部碳氮氧等元素的豐度,解答太陽的“金屬豐度難題”。

  天文學中的金屬,與通常所說的金屬概念并不相同。天文學上把一切比氦重的化學元素都叫金屬,一顆恒星表層大氣里金屬元素的總和就是金屬豐度,也就是恒星的金屬含量。

  宇宙誕生之初,大爆炸產生了大量的氫、氦和極其微量的鋰,于是在這樣的環境下誕生了宇宙中的第一代恒星。

  在那些比太陽更大更重的恒星中,碳氮氧這三種元素幫助催化核聚變反應,碳氮氧循環也就成為主要的能源來源。過去,科學家通過恒星光譜來測定其金屬豐度,但是在觀測與理論出現不一致時,就需要更加直接的證據進行分析,而這些中微子可能有助于解釋恒星的形成和演化。

【免責聲明】本文轉載自網絡,與科技網無關。科技網站對文中陳述、觀點判斷保持中立,不對所包含內容的準確性、可靠性或完整性提供任何明示或暗示的保證。請讀者僅作參考,并請自行承擔全部責任。

主站蜘蛛池模板: 临城县| 阜阳市| 林州市| 茂名市| 贵港市| 古丈县| 太原市| 盐津县| 沅江市| 合山市| 凭祥市| 泊头市| 西丰县| 静安区| 萍乡市| 长沙县| 望江县| 格尔木市| 南开区| 福建省| 拉萨市| 海伦市| 宣化县| 太谷县| 张家口市| 彩票| 万山特区| 平顶山市| 巫山县| 河南省| 安义县| 万盛区| 博兴县| 镶黄旗| 利辛县| 信丰县| 河曲县| 镇康县| 建阳市| 北流市| 新安县|